Copernicus Climate Change Service (C3S) Energy Seminar

Climate Change

European Solar Power Indicators for the PECD 26/06/2023

Rodrigo Amaro e Silva **Yves-Marie Saint-Drenan**

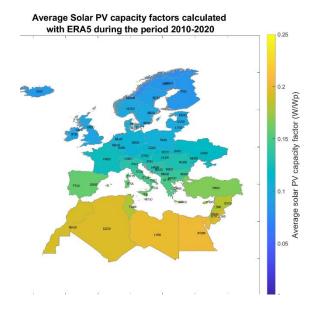
Copernicus Climate Change Service (C3S). Energy Seminar **European Solar Power Indicators for the PECD**

Goals for this session:

Discuss the Solar PV indicator in the scope of PECD

Target topics:

- Ċ Changes from transition PECDv3 to PECDv4
- Reference PV installed capacity & overplanting Ċ
- Differentiating PV technology typologies Ċ



Contrasting with Lot1

- Same methodology as for Lot1
- Specific end-user (ENTSO-E and TSOs)
- With already some results generated

Dernicus

Main changes from PECDv3 to PECDv4

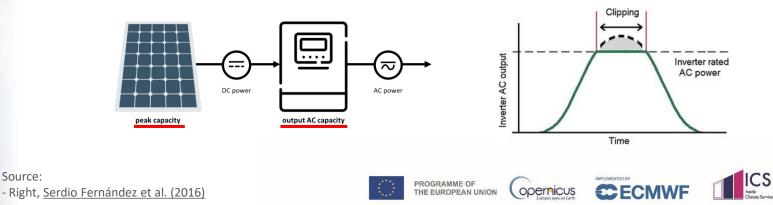
- Move from default to a custom selection of algorithms ٠
- Adjust exclusion areas
- Address assumptions on module geometry
- Address assumptions on reference installed capacity & overplanting ٠

Main changes from PECDv3 to PECDv4

- Move from default to a custom selection of algorithms
- Adjust exclusion areas
- Address assumptions on module geometry
- Address assumptions on reference installed capacity & overplanting

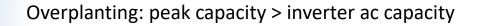
Grey elements are described in Annex. To be presented in C3S seminar (23 June 2026)

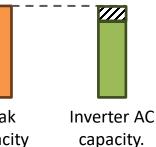
Reference installed capacity & overplanting



PV generation = Capacity Factor × PV Capacity

<u>PV peak vs inverter AC</u> capacity

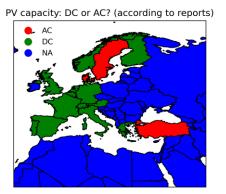

Source:

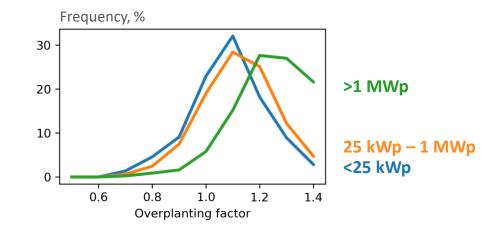

- 1st is DC, expressed in Watt-peak (Wp), and defines overall PV profile
- 2nd, expressed in W, defines max output (if DC>AC, leads to clipping)

Reference installed capacity & overplanting

Peak capacity

Overplanting Installed DC panel peak capacity factor Inverter AC capacity





Reference installed capacity & overplanting

There are national- and scale-based variations

Data sources:

- Left, <u>IEA PVPS National Survey Reports</u>
- Right, <u>Tracking the Sun initiative (USA)</u>

Reference installed capacity & overplanting

The type of reference capacity impacts how overplanting is modelled and PV generation is calculated (c.f. Annex for equations)

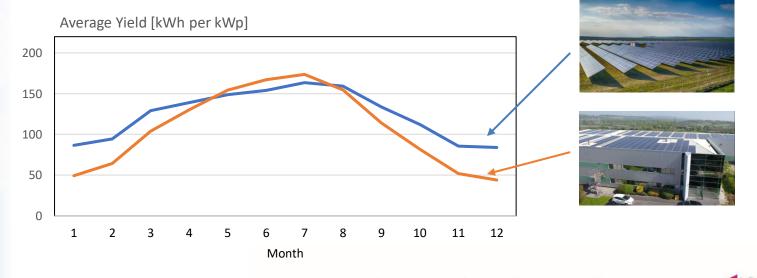
Super important: ensure coherency between context & modelling workflow

provide default values, but also allow end-users to define their context

PV segmentation (typologies)

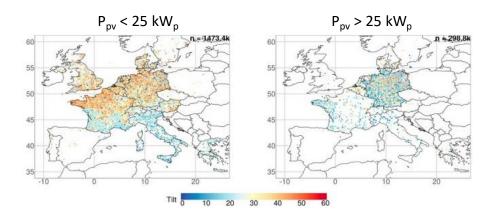
Differentiate segments such as residential, commercial, and utility-scale

- Context-specific model assumptions (e.g., tilt/azimuth, performance)
- Spatial placement considering land use (e.g., urban vs non-urban)
- Fixed vs single-axis tracking system, for utility-contexts



Example of industrial (nearly flat) PV

Fast deployment of industrial PV can change regional profile (annual but also intra-day seasonality)



Input parameters regarding technology assumptions

Exploiting available datasets to properly describe PV typologies

• E.g., <u>Killinger et al. 2018</u>

Kick-off

PV segmentation is foreseen in future developments (2024)

A pilot project will be launched soon targeting the Italian market nodes. However, we will also open a parallel process to engage other TSOs, sharing results and collecting their needs, insights and data.

Take-away message

Discussing particularities of Solar PV indicator in the scope of PECD

- Σ Exciting new things in the pipeline
- Differentiation on user reference capacity and overplanting context
- Differentiation on PV typology
 - Pilot to start already this year with Italian TSO (Terna)

Naturally, the outcomes of each Lot benefits the other

Would like to thank the C3S & ENTSO-E teams for their collaboration

Feel free to reach us by e-mail at:

- yves-marie.saint-drenan@minesparis.psl.eu
- rodrigo.amaro_e_silva@minesparis.psl.eu

Copernicus Climate Change Service (C3S). Energy Seminar European Solar Power Indicators for the PECD

ANNEXES

Reference installed capacity & overplanting

If reference capacity is of inverter (AC) $PV_{gen}^* = \min(PV_{CF} \underline{*} OF, 1) \underline{*} P_{inverter,AC}$

If reference capacity is of PV (peak, DC)

$$Pv_{gen}^* = min(PV_{CF}, 1) * P_{PV,peak}$$

Overbuilding Clipping (normalized output ≤ 1) Convert to generation

