

Copernicus Climate Change Service (C3S)

Energy Seminar

C3S Enhanced Operational European Service in Support to ENTSO-E

Copernicus Climate Change Service (C3S)

European Hydropower Indicators for the PECD

Giovanni Aldrigo (giovanni aldrigo @inclimateservice.com Inside Climate Service (ICS)

European HP Indicators for the PECD – Target

HYDRO POWER

- > Generation
- > Inflow*
- Run-of-River (HRO)
- Generation

Transparency Platform

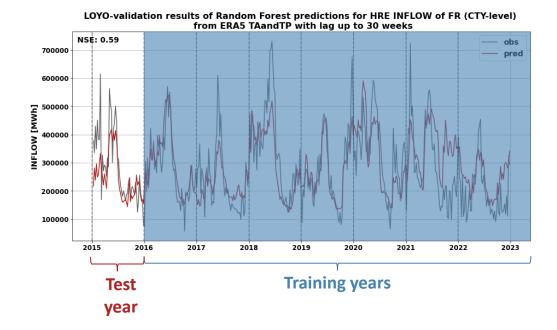
Resolution:

- Country
- Weekly

^{*}Inflow(w) = GENOUT(w) + [FR(w) - FR(w - 1)]

European HP Indicators for the PECD – The Model

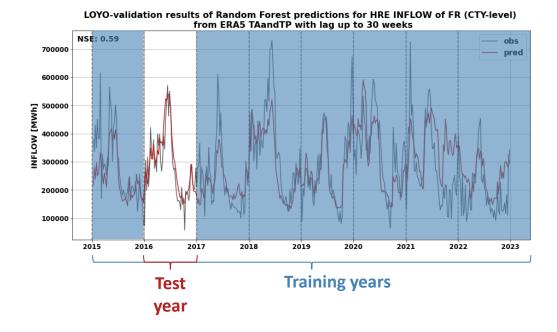
Calculating cumulated TP and average TA over multiple weeks


		U			U		•	
	Date	TA_W1	TP_W1	TA_W2	TP_W2		TA_W15	TP_W30
ERA5	2015-01-05	276	0.007	276	0.025		283	0.583
	2015-01-12							
2-m Temperature [K]Precipitation [m]								
Random Forest Regression Model					\rightarrow	Predictions		
					/		•	ooth HRE
Transparency				\ /		and HRO) ➤ Inflow (to HRE)		
Platform		الق المقال		3//		INTIC	w (to HK	E)
Generation (both HRE and HRO)Inflow (to HRE)	Vali	dation						
imow (co rine)	➤ Leave-0	One-Year	-Out					

^{*}Ho, L.T.T.; Dubus, L.; De Felice, M.; Troccoli, A. Reconstruction of Multidecadal Country-Aggregated Hydro Power Generation in Europe Based on a Random Forest Model. Energies 2020, 13, 1786. https://doi.org/10.3390/en13071786

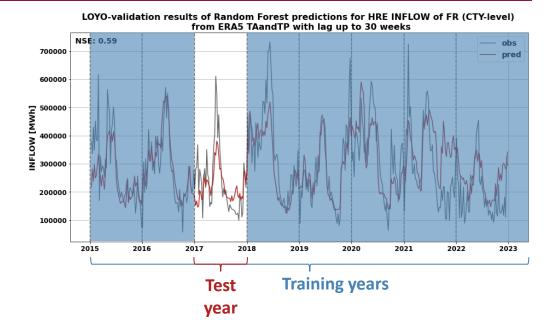
Validation: L-O-Y-O

Training the RF model on all years except one (test year).



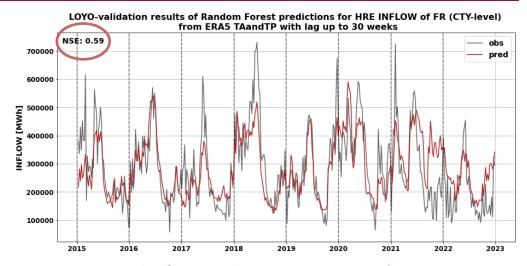
Validation: L-O-Y-O

Training the RF model on all years except one (test year).



Validation: L-O-Y-O

Training the RF model on all years except one (test year).



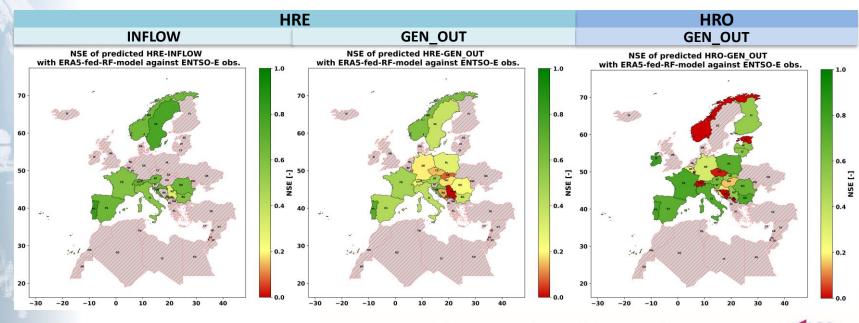
Validation: L-O-Y-O

- Training the RF model on all years except one (test year).
- Metrics evaluated:
 - > NMAE
 - > RMSE
 - > CORR
 - NSE : $NSE = 1 \frac{\sum_{i=0}^{n} (x_m x_o)^2}{\sum_{i=0}^{n} (x_o \overline{x_o})^2}$
 - RelBias

Final Inflow prediction over 8 years for France.

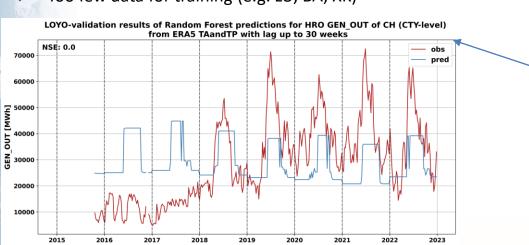
Optimization of RF parameters

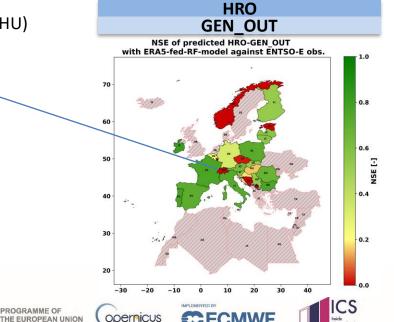
Maximizing combined metrics to target extremes



European HP Indicators for the PECD – Validation Results

Results over Europe


European HP Indicators for the PECD – Validation Results

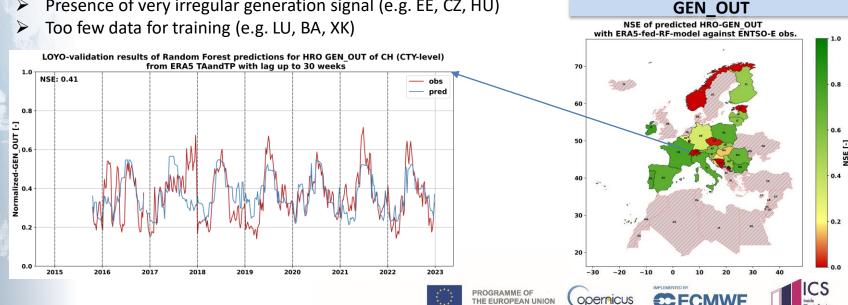

Results over Europe

Normalizing generation data with country aggregated Installed Capacity (IC) can be beneficial (e.g. NO, CH), although IC information are only available as annual

Presence of very irregular generation signal (e.g. EE, CZ, HU)

Too few data for training (e.g. LU, BA, XK)

European HP Indicators for the PECD - Validation Results

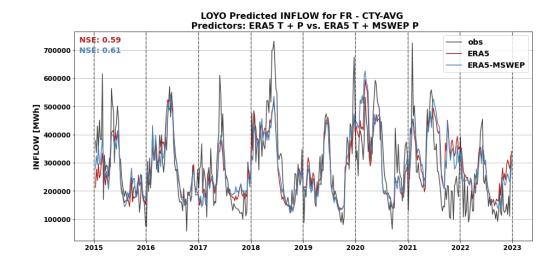

Results over Europe

Normalizing generation data with country aggregated Installed Capacity (IC) can be beneficial (e.g. NO, CH),

HRO

although IC information are only available as annual

Presence of very irregular generation signal (e.g. EE, CZ, HU)


European HP Indicators for the PECD - Validation Results

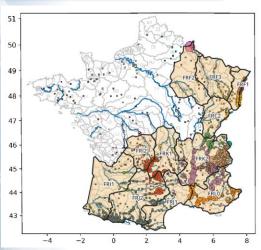
MSWEP for Precipitation

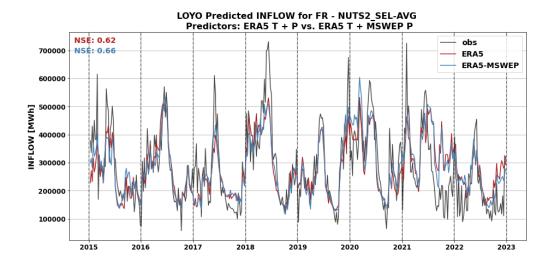
➤ Multi-Source Weighted-Ensemble Precipitation*: global dataset that combines gauge, satellite, and reanalysis data [0.1°, 3h]

ERA5 - Land

Next TA and TP datasets that will be tested

^{*}Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. G. Miralles, A. I. J. M. van Dijk, T. R. McVicar, and R. F. Adler, 2019: MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. Bull. Amer. Meteor. Soc., 100, 473–500. https://doi.org/10.1175/BAMS-D-17-0138.1



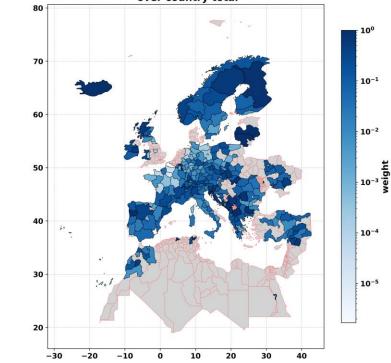


European HP Indicators for the PECD - Validation Results

NUTS2 sub-selection

Selected French regions based on locations of major HP plants (HP plants map provided by L. Dubus)

Temperature and Precipitation have been averaged over a subselection of NUTS2 regions.



European HP Indicators for the PECD – Weighted Average based on Aggregated Installed Capacity (IC)

NUTS2 weighting

Weighted average of predictors based on the distribution of Installed Capacity over each country, based on the data gathered by Elena Restivo (ICS).

Weights based on Aggregated Installed Capacity per NUTS2 region over country total

European HP Indicators for the PECD – Conclusions and next steps

- Model performs well over most European Countries for the two technologies addressed (especially Inflow to Reservoirs and Run-of-river generation)
- Need to find a solution for countries showing unsatisfactory scores (big help would come from monthly Installed Capacity data)
- Keep improving the model in multiple directions (targeting extremes, testing ERA5 Land, testing IC-based weighted average of predictors)
- Employ model to reconstruct the **historical** generation time series and estimate the future **projections** (EURO-CORDEX and CMIP6)

European HP Indicators for the PECD – ICEM 2023 & Hydropower

Want to hear more on **Hydropower**?

- WMO Global Energy Resilience Atlas: Climate Risk Indices for Hydropower (RICHAIHU WU) 29th, 11:05-11:20 Sala degli Scrovegni
- Generation of a future-proof hydro inflow dataset for power system studies (NICHOLAS FABIO BONFANTI)
 - 29th, **11:20-11:35** Sala dei Giganti
- Building a climate service for hydropower ressources: Application to Mpatamanga project in Malawi within FOCUS-Africa project (HIBA OMRANI)
 - 29th, 11:20-11:35 Sala dei Giganti
- Hydrological Seasonal Forecast as a Resource Assessment Tool for the Upper Adige Catchment (MATTIA ZARAMELLA)
 - 29th, **11:35-11:50** Sala degli Scrovegni
- Implementation of customized hydropower model for enhancing the hydropower generation in Tanzania (ALBERTO TROCCOLI)
 - 29th, **11:50-12:20** Sala degli Scrovegni
- Also give a look at the posters!

giovanni.aldrigo@inclimateservice.com

