Copernicus Climate Change Service (C3S) Energy Seminar

Climate Change

Global Solar PV Indicator

26/06/2023

Rodrigo Amaro e Silva **Yves-Marie Saint-Drenan**

Goals for this session:

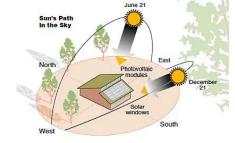
Introduce the Global Solar PV indicator

Target topics:

- Ċ Context on the technology and the indicator itself
- Modelling workflow Ċ
- Some practical considerations Ċ
- Expectations for the future Ċ

Giving context to the technology

PV is known for its modularity and adaptability, so it is easy to find it in very different contexts



Giving context to the environmental factors

Different levels of dependency towards three main factors

Weather

Angle of incidence

Land use

PROGRAMME OF THE EUROPEAN UNION

opernicus

Giving context to the indicator

Capacity Factor, the expected generation per unit of installed capacity

- Wh/Wp, or any equivalent (e.g., kWh/kWp, MWh/MWp, etc.)
- Allows to compare regions and even time periods
- Adapts to end-user scenario, since:

PV_{generation} = Capacity Factor × Installed Capacity

Modelling workflow

Physically-based approach, based on own methodology, doi: 10.5194/asr-15-51-2018

Irradiance & air temperature

Modelled regional PV generation time series

PV conversion model chain

Considered losses: optical, thermal, electric (DC & AC)

Not considered: module degradation, curtailment, shading, coupling to storage

Data streams

Aiming for historical, operational, and prospective analysis

<u>Historical</u>: ERA5 reanalysis* (1950 onwards) <u>Climate projections</u>: CMIP6** (up to 2100)

For 2023, monthly averaged values are expected Later it will be improved to hourly

* Hersbach et al. (2020), doi: 10.1002/qj.3803
** Eyring et al. (2016), doi: 10.5194/gmd-9-1937-2016

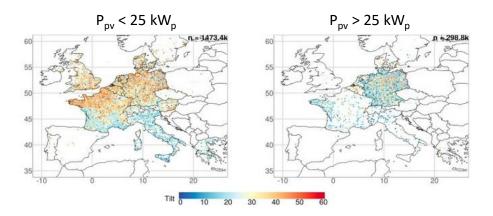
PV geometry

Considers a plausible regional-level PV module tilt and orientation representation

- Location-specific distribution
 - Centered in 70% optimal tilt and South orientation
 - Derived & expanded from real installations in

Looking for complementary data sets to increase robustness

Images generated in dezgo.com

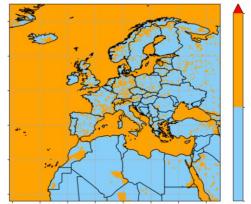


opernicus

PV geometry

An example from Killinger et al. (2018)*

* doi: 10.1016/j.solener.2018.08.051


Exclusion areas

Leveraging on diverse data:

- Land use (X water bodies, protected areas) ٠
- Orography (X high-slope, high elevation)

Expected to refine this with high-resolution PV deployment data

Chile is a particular case where we can find PV at very high elevation levels

Excluded

Considered

Some computational aspects

Lots of calculations implied:

3 dimensions: time, space, and module tilt/orientation (due to mix)

Need for optimizing and parallelizing our code (interacting with \square)

Ongoing efforts to make computations more efficient

Some methodological aspects

Being a physically-based approach:

- PV data is mostly used for setting up assumptions and validation ٠
- Extending assumptions in time and space, less dependent on data issues ٠ (lack of data, low quality data)
- It does not assimilate curtailment, malfunction, & storage effects (which is good and bad)

Take-away message

Overview of the Solar PV indicator and its modelling workflow

- **Exciting new things in the pipeline**
- Improve time resolution to hourly
- Contribute to future CDS toolbox: modelling of specific PV technologies ٠
 - Tracker, possibly bifacial, floating

opernicus

Would like to thank the C3S team for their collaboration

Feel free to reach us by e-mail at:

- yves-marie.saint-drenan@minesparis.psl.eu
- rodrigo.amaro_e_silva@minesparis.psl.eu

